Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.

Identifieur interne : 002436 ( Main/Exploration ); précédent : 002435; suivant : 002437

Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.

Auteurs : Shengzuo Fang [République populaire de Chine] ; Dong Liu ; Ye Tian ; Shiping Deng ; Xulan Shang

Source :

RBID : pubmed:23637838

Descripteurs français

English descriptors

Abstract

Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.

DOI: 10.1371/journal.pone.0061461
PubMed: 23637838
PubMed Central: PMC3630193


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.</title>
<author>
<name sortKey="Fang, Shengzuo" sort="Fang, Shengzuo" uniqKey="Fang S" first="Shengzuo" last="Fang">Shengzuo Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forest Resources and Environment, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dong" sort="Liu, Dong" uniqKey="Liu D" first="Dong" last="Liu">Dong Liu</name>
</author>
<author>
<name sortKey="Tian, Ye" sort="Tian, Ye" uniqKey="Tian Y" first="Ye" last="Tian">Ye Tian</name>
</author>
<author>
<name sortKey="Deng, Shiping" sort="Deng, Shiping" uniqKey="Deng S" first="Shiping" last="Deng">Shiping Deng</name>
</author>
<author>
<name sortKey="Shang, Xulan" sort="Shang, Xulan" uniqKey="Shang X" first="Xulan" last="Shang">Xulan Shang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23637838</idno>
<idno type="pmid">23637838</idno>
<idno type="doi">10.1371/journal.pone.0061461</idno>
<idno type="pmc">PMC3630193</idno>
<idno type="wicri:Area/Main/Corpus">002615</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002615</idno>
<idno type="wicri:Area/Main/Curation">002615</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002615</idno>
<idno type="wicri:Area/Main/Exploration">002615</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.</title>
<author>
<name sortKey="Fang, Shengzuo" sort="Fang, Shengzuo" uniqKey="Fang S" first="Shengzuo" last="Fang">Shengzuo Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forest Resources and Environment, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dong" sort="Liu, Dong" uniqKey="Liu D" first="Dong" last="Liu">Dong Liu</name>
</author>
<author>
<name sortKey="Tian, Ye" sort="Tian, Ye" uniqKey="Tian Y" first="Ye" last="Tian">Ye Tian</name>
</author>
<author>
<name sortKey="Deng, Shiping" sort="Deng, Shiping" uniqKey="Deng S" first="Shiping" last="Deng">Shiping Deng</name>
</author>
<author>
<name sortKey="Shang, Xulan" sort="Shang, Xulan" uniqKey="Shang X" first="Xulan" last="Shang">Xulan Shang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Alnus (enzymology)</term>
<term>Alnus (growth & development)</term>
<term>Asparaginase (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Cycle (MeSH)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Populus (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Salix (enzymology)</term>
<term>Salix (growth & development)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (enzymology)</term>
<term>Trees (growth & development)</term>
<term>Urease (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (MeSH)</term>
<term>Alnus (croissance et développement)</term>
<term>Alnus (enzymologie)</term>
<term>Arbres (croissance et développement)</term>
<term>Arbres (enzymologie)</term>
<term>Asparaginase (métabolisme)</term>
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Cycle de l'azote (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Populus (MeSH)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Rhizosphère (MeSH)</term>
<term>Salix (croissance et développement)</term>
<term>Salix (enzymologie)</term>
<term>Urease (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Asparaginase</term>
<term>Carbon</term>
<term>Nitrogen</term>
<term>Peptide Hydrolases</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Alnus</term>
<term>Arbres</term>
<term>Racines de plante</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Alnus</term>
<term>Arbres</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Alnus</term>
<term>Salix</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Alnus</term>
<term>Plant Roots</term>
<term>Salix</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Asparaginase</term>
<term>Azote</term>
<term>Carbone</term>
<term>Peptide hydrolases</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
<term>Biomass</term>
<term>Nitrogen Cycle</term>
<term>Populus</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agriculture</term>
<term>Biomasse</term>
<term>Cycle de l'azote</term>
<term>Microbiologie du sol</term>
<term>Populus</term>
<term>Rhizosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23637838</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.</ArticleTitle>
<Pagination>
<MedlinePgn>e61461</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0061461</ELocationID>
<Abstract>
<AbstractText>Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Shengzuo</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Ye</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Shiping</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Xulan</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.1</RegistryNumber>
<NameOfSubstance UI="D001215">Asparaginase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.5</RegistryNumber>
<NameOfSubstance UI="D014510">Urease</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029661" MajorTopicYN="N">Alnus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001215" MajorTopicYN="N">Asparaginase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="N">Nitrogen Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014510" MajorTopicYN="N">Urease</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23637838</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0061461</ArticleId>
<ArticleId IdType="pii">PONE-D-12-36220</ArticleId>
<ArticleId IdType="pmc">PMC3630193</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Environ Manage. 2007 Nov;85(3):672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2010;22(7):1040-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21174994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 12;95(10):5632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Nov;125(3):420-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Nov;71(11):6784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Mar;63(3):372-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Deng, Shiping" sort="Deng, Shiping" uniqKey="Deng S" first="Shiping" last="Deng">Shiping Deng</name>
<name sortKey="Liu, Dong" sort="Liu, Dong" uniqKey="Liu D" first="Dong" last="Liu">Dong Liu</name>
<name sortKey="Shang, Xulan" sort="Shang, Xulan" uniqKey="Shang X" first="Xulan" last="Shang">Xulan Shang</name>
<name sortKey="Tian, Ye" sort="Tian, Ye" uniqKey="Tian Y" first="Ye" last="Tian">Ye Tian</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Fang, Shengzuo" sort="Fang, Shengzuo" uniqKey="Fang S" first="Shengzuo" last="Fang">Shengzuo Fang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002436 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002436 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23637838
   |texte=   Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23637838" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020